3 research outputs found

    Evaluation of quality of service in fourth generation wireless and mobile networks

    Get PDF
    Communication networks extend network capacity and coverage by leveraging network and resource architecture in a dynamic way. However, because of the different communication technologies and quality of service (QoS, managing and monitoring these networks are too difficult. All communication technology has its own characteristics while the applications you use have their own QoS requirements. The methods are based on the QoS analysis for each application or access network separately. However, these methods do not combine all performance and wireless access networks while reporting QoS quality to the group Arrangement. Therefore, it is difficult to obtain any aggregate performance results using these methods. In this project, a methodical method is applied for the QoS analysis of these types of networks. The method uses a fuzzy logic (FL), artificial neural network (ANN) and Adaptive Neuro-fuzzy Interference System (ANFIS) to evaluate and predict the performance QoS of networks. The proposed methods consider the significance of QoS-related parameters, the available network-based applications, and the available Radio Access Networks (RANs) to characterize the network performance with a set of three integrated QoS metrics. The first metric denotes the performance of each available application on the network, the second one represents the performance of each active RAN on the network, and the third one characterizes the QoS level of the entire network configuration. The obtained predicting output were compared to the actual data and to each other to test which system the best for this study. The results ANN model were the closed to the real data than outcome ANFIS model

    An innovative fractal monopole MIMO antenna for modern 5G applications

    Get PDF
    Proposed in this paper is the design of an innovative and compact antenna array which based on four radiating elements for multi-input multi-output (MIMO) antenna applications used in 5G communication systems. The radiating elements are fractal curves excited using an open-circuited feedline through a coplanar waveguide (CPW). The feedline is electromagnetically coupled to the inside edge of the radiating element. The array's impedance bandwidth is enhanced by inserting a ground structure composed of low-high-low impedance between the radiating elements. The low-impedance section of the ground is a staircase structure that is inclined at an angle to follow the input feedline. This inter-radiating element essentially suppresses near-field radiation between adjacent radiators. A band reject filter based on a composite right/left hand (CRLH) structure is mounted at the back side of the antenna array to reduce mutual coupling between the antenna elements by choking surface wave propagations that can otherwise degrade the radiation performance of the array antenna. The CRLH structure is based on the Hilbert fractal geometry, and it was designed to act like a stop band filter over the desired frequency bands. The proposed antenna array was fabricated and tested. It covers the frequency bands in the range from 2 to 3 GHz, 3.4-3.9 GHz, and 4.4-5.2 GHz. The array has a maximum gain of 6. 2dBi at 3.8 GHz and coupling isolation better than 20 dB. The envelope correlation coefficient of the antenna array is within the acceptable limit. There is good agreement between the simulated and measured results.Dr. Mohammad Alibakhshikenari acknowledges support from the CONEX-Plus programme funded by Universidad Carlos III de Madrid and the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 801538. Funding for APC: Universidad Carlos III de Madrid (Read & Publish Agreement CRUE-CSIC 2022)

    An innovative fractal monopole MIMO antenna for modern 5G applications

    Get PDF
    Proposed in this paper is the design of an innovative and compact antenna array which based on four radiating elements for multi-input multi-output (MIMO) antenna applications used in 5G communication systems. The radiating elements are fractal curves excited using an open-circuited feedline through a coplanar waveguide (CPW). The feedline is electromagnetically coupled to the inside edge of the radiating element. The array’s impedance bandwidth is enhanced by inserting a ground structure composed of low–high-low impedance between the radiating elements. The low-impedance section of the ground is a staircase structure that is inclined at an angle to follow the input feedline. This inter-radiating element essentially suppresses near-field radiation between adjacent radiators. A band reject filter based on a composite right/left hand (CRLH) structure is mounted at the back side of the antenna array to reduce mutual coupling between the antenna elements by choking surface wave propagations that can otherwise degrade the radiation performance of the array antenna. The CRLH structure is based on the Hilbert fractal geometry, and it was designed to act like a stop band filter over the desired frequency bands. The proposed antenna array was fabricated and tested. It covers the frequency bands in the range from 2 to 3 GHz, 3.4–3.9 GHz, and 4.4–5.2 GHz. The array has a maximum gain of 6.2dBi at 3.8 GHz and coupling isolation better than -20 dB. The envelope correlation coefficient of the antenna array is within the acceptable limit. There is good agreement between the simulated and measured results
    corecore